61 research outputs found

    An electrical power system for CubeSats

    Get PDF
    The advent of CubeSats has provided a platform for relatively low-budget programmes to realise space missions. In South Africa, Stellenbosch University and the Cape Peninsula University of Technology have impressive space programmes and have been involved in numerous successful satellite launches. A number of CubeSat projects are currently in progress and commercial-grade Attitude Determination and Control Systems (ADCS), and communications modules, are being developed by the respective universities. The development of a CubeSat-compatible Electrical Power System remains absent, and would be beneficial to future satellite activity here in South Africa. In this thesis, some fundamental aspects of electronic design for space applications is looked at, including but not limited to radiation effects on MOSFET devices; this poses one of the greatest challenges to space-based power systems. To this extent, the different radiation-induced effects and their implications are looked at, and mitigation strategies are discussed. A review of current commercial modules is performed and their design and performance evaluated. A few shortcomings of current systems are noted and corresponding design changes are suggested; in some instances these changes add complexity, but they are shown to introduce appreciable system reliability. A single Li-Ion cell configuration is proposed that uses a 3.7 V nominal bus voltage. Individual battery charge regulation introduces minor inefficiencies, but allows isolation of cells from the pack in the case of cell failure or degradation. A further advantage is the possibility for multiple energy storage media on the same power bus, allowing for EPS-related technology demonstrations, with an assurance of minimum system capabilities. The design of each subsystem is discussed and its respective failure modes identified. A limited number of single points of failure are noted and the mitigation strategies taken are discussed. An initial hardware prototype is developed that is used to test and characterise system performance. Although a few minor modifications are needed, the overall system is shown to function as designed and the concepts used are proven

    Group invariant machine learning by fundamental domain projections

    Get PDF
    We approach the well-studied problem of supervised group invariant and equivariant machine learning from the point of view of geometric topology. We propose a novel approach using a pre-processing step, which involves projecting the input data into a geometric space which parametrises the orbits of the symmetry group. This new data can then be the input for an arbitrary machine learning model (neural network, random forest, support-vector machine etc). We give an algorithm to compute the geometric projection, which is efficient to implement, and we illustrate our approach on some example machine learning problems (including the well-studied problem of predicting Hodge numbers of CICY matrices), in each case finding an improvement in accuracy versus others in the literature. The geometric topology viewpoint also allows us to give a unified description of so-called intrinsic approaches to group equivariant machine learning, which encompasses many other approaches in the literature.Comment: 21 pages, 4 figure

    Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments

    Full text link
    Inter satellite laser interferometry is a central component of future space-borne gravity instruments like LISA, eLISA, NGO and future geodesy missions. The inherently small laser wavelength allows to measure distance variations with extremely high precision by interfering a reference beam with a measurement beam. The readout of such interferometers is often based on tracking phasemeters, able to measure the phase of an incoming beatnote with high precision over a wide range of frequencies. The implementation of such phasemeters is based on all digital phase-locked loops, hosted in FPGAs. Here we present a precise model of an all digital phase locked loop that allows to design such a readout algorithm and we support our analysis by numerical performance measurements and experiments with analog signals.Comment: 17 pages, 6 figures, accepted for publication in CQ

    EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA

    Get PDF
    The Laser Interferometer Space Antenna (LISA) is a joint ESA/NASA mission proposed to observe gravitational waves. One important noise source in the LISA phase measurement will be on-board reference oscillators. An inter-spacecraft clock tone transfer chain will be necessary to remove this non-negligible phase noise in post processing. One of the primary components of this chain are electro-optic modulators (EOMs). At modulation frequencies of 2 GHz, we characterise the excess phase noise of a fibre-coupled integrated EOM in the LISA measurement band (0.1 mHz to 1 Hz). The upper phase noise limit was found to be almost an order of magnitude better than required by the LISA mission. In addition, the EOM's phase dependence on temperature and optical power was determined. The measured coefficients are within a few milliradians per kelvin and per watt respectively and thereby negligible with the expected on-board temperature and laser power stability.DLR/50 OQ 0601DFG/EXC/QUES

    Measuring coalignment of retroreflectors with large lateral incoming-outgoing beam offset

    Get PDF
    A method based on phase-shifting Fizeau interferometry is presented with which retroreflectors with large incoming-outgoing beam separations can be tested. The method relies on a flat Reference Bar that is used to align two auxiliary mirrors parallel to each other to extend the aperture of the interferometer. The method is applied to measure the beam coalignment of a prototype Triple Mirror Assembly of the GRACE Follow-On Laser Ranging Interferometer, a future satellite-to-satellite tracking device for Earth gravimetry. The Triple Mirror Assembly features a lateral beam offset of incoming and outgoing beam of 600 mm, whereas the acceptance angle for the incoming beam is only about ±2 mrad. With the developed method, the beam coalignment of the prototype Triple Mirror Assembly was measured to be 9 μrad with a repeatability of below 1 μrad

    Fiber modulators and fiber amplifiers for LISA

    Get PDF
    We present the sideband phase characteristics of a fiber-coupled integrated electro-optical modulator (EOM) at a modulation frequency of 2 GHz for Fourier frequencies from 0.1 mHz to 1 Hz. The upper phase noise limit was almost an order of magnitude better than required for LISA. The EOM's phase dependencies on temperature and transmitted optical power were measured and found to be uncritical. Additionally we have investigated three optical amplifiers emitting 1 W. Their differential phase noise and optical pathlength noise as one contribution to differential phase noise were measured. The measured differential phase noise was within the requirement. The dependencies of differential phase noise on pump power were measured and requirements for the operation of the amplifier on the LISA satellite derived.DLR/50 OQ 0601DFG/EXC/QUES

    Fostering Program Comprehension in Novice Programmers - Learning Activities and Learning Trajectories

    Get PDF
    This working group asserts that Program Comprehension (ProgComp) plays a critical part in the process of writing programs. For example, this paper is written from a basic draft that was edited and revised until it clearly presented our idea. Similarly, a program is written incrementally, with each step tested, debugged and extended until the program achieves its goal. Novice programmers should develop program comprehension skills as they learn to code so that they are able both to read and reason about code created by others, and to reflect on their code when writing, debugging or extending it. To foster such competencies our group identified two main goals: (g1) to collect and define learning activities that explicitly address key components of program comprehension and (g2) to define tentative theoretical learning trajectories that will guide teachers as they select and sequence those learning activities in their CS0/CS1/CS2 or K-12 courses. The WG has completed the first goal and laid down a strong foundation towards the second goal as presented in this report. After a thorough literature review, a detailed description of the Block Model is provided, as this model has been used with a dual purpose, to classify and present an extensive list of ProgComp tasks, and to describe a possible learning trajectory for a complex task, covering different cells of the Block Model matrix. The latter is intended to help instructors to decompose complex tasks and identify which aspects of ProgComp are being fostered

    AVONET: Morphological, ecological and geographical data for all birds

    Get PDF
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.Fil: Tobias, Joseph A.. Imperial College London; Reino Unido. University of Oxford; Reino UnidoFil: Sheard, Catherine. University of Oxford; Reino Unido. University of Bristol; Reino UnidoFil: Pigot, Alex L.. University of Oxford; Reino Unido. University College London; Estados UnidosFil: Devenish, Adam J. M.. Imperial College London; Reino UnidoFil: Yang, Jingyi. Imperial College London; Reino UnidoFil: Sayol, Ferran. University College London; Estados UnidosFil: Neate Clegg, Montague H. C.. University of Oxford; Reino Unido. University of Utah; Estados UnidosFil: Alioravainen, Nico. University of Oxford; Reino Unido. Natural Resources Institute Finland; FinlandiaFil: Weeks, Thomas L.. Imperial College London; Reino Unido. Natural History Museum; Reino UnidoFil: Barber, Robert A.. Imperial College London; Reino UnidoFil: Walkden, Patrick A.. Imperial College London; Reino Unido. Natural History Museum; Reino UnidoFil: MacGregor, Hannah E. A.. University of Oxford; Reino Unido. University of Bristol; Reino UnidoFil: Jones, Samuel E. I.. University of Oxford; Reino Unido. University of London; Reino UnidoFil: Vincent, Claire. Organización de Las Naciones Unidas; ArgentinaFil: Phillips, Anna G.. Senckenberg Biodiversity And Climate Research Centre; AlemaniaFil: Marples, Nicola M.. Trinity College; Estados UnidosFil: Montaño Centellas, Flavia A.. Universidad Mayor de San Andrés; Bolivia. University of Florida; Estados UnidosFil: Leandro Silva, Victor. Universidade Federal de Pernambuco; BrasilFil: Claramunt, Santiago. University of Toronto; Canadá. Royal Ontario Museum; CanadáFil: Darski, Bianca. Universidade Federal do Rio Grande do Sul; BrasilFil: Freeman, Benjamin G.. University of British Columbia; CanadáFil: Bregman, Tom P.. University of Oxford; Reino Unido. Future-Fit Foundation; Reino UnidoFil: Cooney, Christopher R.. University Of Sheffield; Reino UnidoFil: Hughes, Emma C.. University Of Sheffield; Reino UnidoFil: Capp, Elliot J. R.. University Of Sheffield; Reino UnidoFil: Varley, Zoë K.. University Of Sheffield; Reino Unido. Natural History Museum; Reino UnidoFil: Friedman, Nicholas R.. Okinawa Institute of Science and Technology Graduate University; JapónFil: Korntheuer, Heiko. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Corrales Vargas, Andrea. Universidad Nacional de Costa Rica; Costa RicaFil: García, Natalia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentin
    corecore